Question	Scheme	Marks	AOs
1 (a)	25	B1	3.4
		(1)	
(b)	Attempts to differentiate using the product rule $\frac{dv}{dt} = \ln(t+1) \times -0.4 + \frac{(10-0.4t)}{t+1}$	M1 A1	3.1b 1.1b
	Sets their $\frac{dv}{dt} = 0 \Rightarrow \frac{(10 - 0.4t)}{(t+1)} = 0.4 \ln(t+1)$ and then makes progress towards making "t " the subject (See notes for this)	dM1	1.1b
	$t = \frac{25 - \ln(t+1)}{1 + \ln(t+1)}$ $t = \frac{26}{1 + \ln(t+1)} - 1 *$	A1*	2.1
		(4)	
(c)	(i) Attempts $t_2 = \frac{26}{1 + \ln 8} - 1$	M1	1.1b
	awrt 7.298	A1	1.1b
	(ii) awrt 7.33 seconds	A1	3.2a
		(3)	
			(8 marks

(a)

- B1: 25 but condone 25 seconds. If another value is given (apart from 0) it is B0
- (b)
- M1: Attempts to use the product rule in an attempt to differentiate $v = (10 0.4t) \ln(t + 1)$ Look for $(10 - 0.4t) \times \frac{1}{(t+1)} \pm k \ln(t+1)$, where *k* is a constant, condoning slips.

If you see direct evidence of an incorrect rule used e.g. vu'-uv' it is M0 You will see attempts from $v = 10 \ln(t+1) - 0.4t \ln(t+1)$ which can be similarly marked.

In this case look for $\frac{a}{t+1} \pm \frac{bt}{t+1} \pm c \ln(t+1)$

A1: Correct differentiation. Condone a missing left hand or it seen as v', $\frac{dy}{dx}$ or even = 0

$$\left(\frac{dv}{dt}\right) = \ln(t+1) \times -0.4 + \frac{(10-0.4t)}{t+1} \text{ or equivalent such as } \left(\frac{dv}{dt}\right) = \frac{10}{t+1} - \frac{0.4t}{(t+1)} - 0.4\ln(t+1)$$

dM1: Score for setting their dV/dt = 0 (which must be in an appropriate form) and proceeding to an equation where the variable *t* occurs only once – ignoring $\ln(t + 1)$.

See two examples of how this can be achieved below. It is dependent upon the previous M. Look for the following steps

- An allowable derivative set (or implied) = 0 E.g. $\ln(t+1) \times 0.4 = \frac{(10-0.4t)}{t+1}$
- Cross multiplication (or division) and rearrangement to form an equation where the variable *t* only occurs once.

E.g.1.

$$\ln(t+1) \times 0.4 = \frac{(10-0.4t)}{t+1}$$

$$\Rightarrow \ln(t+1) = \frac{25-t}{t+1}$$

$$\Rightarrow \ln(t+1) = -1 + \frac{26}{t+1}$$

E.g 2

$$\ln(t+1) \times 0.4 = \frac{(10-0.4t)}{t+1}$$
$$\Rightarrow 0.4t \ln(t+1) + 0.4 \ln(t+1) = 10 - 0.4t$$
$$\Rightarrow 0.4t \left(1 + \ln(t+1)\right) = 10 - 0.4 \ln(t+1)$$

A1*: Correctly proceeds to the given answer of $t = \frac{26}{1 + \ln(t+1)} - 1$ showing all key steps.

The key steps must include

- use of $\frac{dv}{dt}$ or v'which must be correct
- a correct line preceding the given answer, usually $t = \frac{25 \ln(t+1)}{1 + \ln(t+1)}$ or $\frac{26}{t+1} 1 = \ln(t+1)$

(c) (i)

M1: Attempts to use the iteration formula at least once.

Usually to find $t_2 = \frac{26}{1 + \ln 8} - 1$ which may be implied by awrt 7.44

A1: awrt 7.298. This alone will score both marks as iteration is implied. ISW after sight of this value. As t_3 is the only value that rounds to 7.298 just score the rhs, it does not need to be labelled t_3

(c)(ii)

A1: Uses repeated iteration until value established as awrt 7.33 **seconds**. Allow awrt 7.33 **s** Requires units. It also requires some evidence of iteration which will be usually be awarded from the award of the M

Question	Scheme	Marks	AOs
2(a)	e^{3x} $(4x^2 + k)3e^{3x} - 8xe^{3x}$		
	$f(x) = \frac{e^{3x}}{4x^2 + k} \Longrightarrow f'(x) = \frac{(4x^2 + k)3e^{3x} - 8xe^{3x}}{(4x^2 + k)^2}$	M1	1.1b
	or	A1	1.1b
	$f(x) = e^{3x} \left(4x^2 + k\right)^{-1} \Longrightarrow f'(x) = 3e^{3x} \left(4x^2 + k\right)^{-1} - 8xe^{3x} \left(4x^2 + k\right)^{-2}$		
	$f'(x) = \frac{\left(12x^2 - 8x + 3k\right)e^{3x}}{\left(4x^2 + k\right)^2}$	A1	2.1
		(3)	
(b)	If $y = f(x)$ has at least one stationary point then $12x^2 - 8x + 3k = 0$ has at least one root	B1	2.2a
	Applies $b^{2} - 4ac (\ge) 0$ with $a = 12, b = -8, c = 3k$	M1	2.1
	$0 < k \leq \frac{4}{9}$	A1	1.1b
		(3)	
			(6 marks)

M1: Attempts the quotient rule to obtain an expression of the form $\frac{\alpha (4x^2 + k)e^{3x} - \beta xe^{3x}}{(4x^2 + k)^2}, \alpha > 0$

condoning bracketing errors/omissions as long as the intention is clear. If the quotient rule formula is quoted it must be correct.

Condone e.g. $f'(x) = \frac{(4x^2 + k)3e^{3x} - 8xe^{3x}}{(4x^2 + k)}$ provided an incorrect formula is not quoted.

May also see product rule applied to $e^{3x} (4x^2 + k)^{-1}$ to obtain an expression of the form $\alpha e^{3x} (4x^2 + k)^{-1} + \beta x e^{3x} (4x^2 + k)^{-2}$ $\alpha, \beta 0 < 0$ condoning bracketing errors/omissions as

long as the intention is clear. If the product rule formula is quoted it must be correct.

A1: Correct differentiation in any form with correct bracketing which may be implied by subsequent work.

A1: Obtains
$$f'(x) = (12x^2 - 8x + 3k)g(x)$$
 where $g(x) = \frac{e^{3x}}{(4x^2 + k)^2}$ or equivalent
e.g. $g(x) = e^{3x}(4x^2 + k)^{-2}$

Allow recovery from "invisible" brackets earlier and apply isw here once a correct answer is seen. Note that the complete form of the answer is not given so allow candidates to go from e.g.

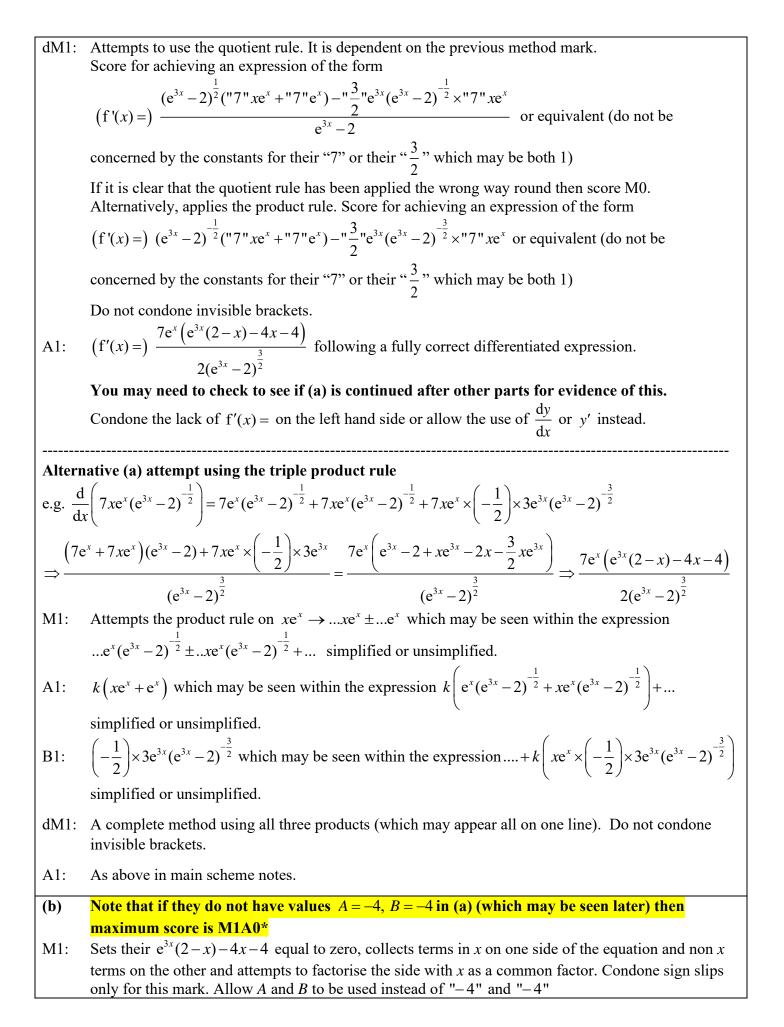
$$\frac{\left(4x^{2}+k\right)3e^{3x}-8xe^{3x}}{\left(4x^{2}+k\right)^{2}} \text{ or } 3e^{3x}\left(4x^{2}+k\right)^{-1}-8xe^{3x}\left(4x^{2}+k\right)^{-2} \text{ to } \frac{\left(12x^{2}-8x+3k\right)e^{3x}}{\left(4x^{2}+k\right)^{2}} \text{ for the final mark.}$$

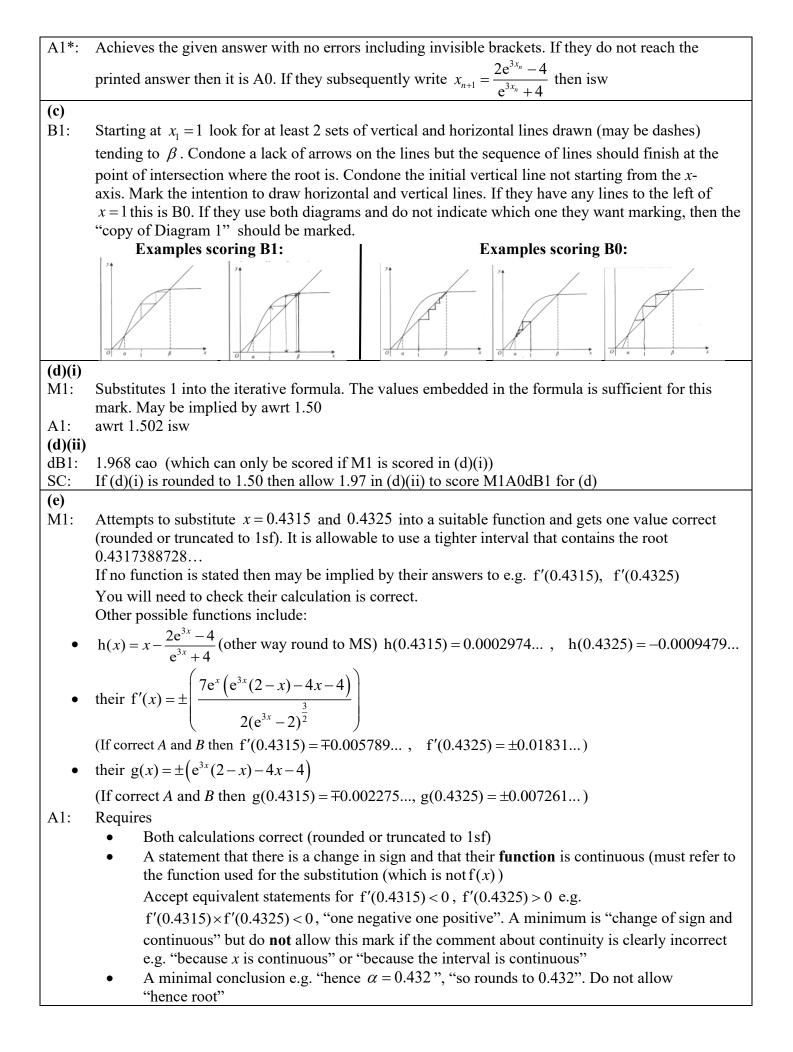
The "f'(x) = " must appear at some point but allow e.g. " $\frac{dy}{dx}$ = "

PMT

- (b) Note that B0M1A1 is not possible in (b)
- **B1**: Deduces that if y = f(x) has at least one stationary point then $12x^2 8x + 3k = 0$ has at least one root. There is no requirement to formally state $\frac{e^{3x}}{(4x^2 + k)^2} > 0$

This may be implied by an attempt at $b^2 - 4ac \ge 0$ or $b^2 - 4ac > 0$ condoning slips.


M1: Attempts $b^2 - 4ac \dots 0$ with a = 12, b = -8, c = 3k where \dots is e.g. "=", <, >, etc. Alternatively attempts to complete the square and sets rhs $\dots 0$


E.g.
$$12x^2 - 8x + 3k = 0 \Rightarrow x^2 - \frac{2}{3}x + \frac{1}{4}k = 0 \Rightarrow \left(x - \frac{1}{3}\right)^2 = \frac{1}{9} - \frac{1}{4}k$$
 leading to $\frac{1}{9} - \frac{1}{4}k \ge 0$

A1: $0 < k \leq \frac{4}{9}$ but condone $k \leq \frac{4}{9}$ and condone $0 \leq k \leq \frac{4}{9}$

Must be in terms of k not x so do not allow e.g. $0 < x \le \frac{4}{9}$ but condone $\left(0, \frac{4}{9}\right]$ or $\left[0, \frac{4}{9}\right]$

Question	Scheme	Marks	AOs
3(a)	$\dots xe^x + \dots e^x$	M1	1.1b
	$k(xe^{x}+e^{x})$	A1	1.1b
	$\frac{d}{dx}\left(\sqrt{e^{3x}-2}\right) = \frac{1}{2} \times 3e^{3x} \left(e^{3x}-2\right)^{-\frac{1}{2}}$	B1	1.1b
	$(f'(x) =) \frac{(e^{3x} - 2)^{\frac{1}{2}} ("7"xe^{x} + "7"e^{x}) - "\frac{3}{2}"e^{3x}(e^{3x} - 2)^{-\frac{1}{2}} \times "7"xe^{x}}{e^{3x} - 2}$	dM1	2.1
	$f'(x) = \frac{7e^{x} (e^{3x}(2-x)-4x-4)}{2(e^{3x}-2)^{\frac{3}{2}}}$	A1	1.1b
-		(5)	
(b)	$e^{3x}(2-x)-4x-4=0 \Rightarrow x(e^{3x}\pm)=e^{3x}\pm$	M1	1.1b
	$\Rightarrow x = \frac{2e^{3x} - 4}{e^{3x} + 4} *$	A1*	2.1
-		(2)	
(c)	Draws a vertical line $x = 1$ up to the curve then across to the line $y = x$ then up to the curve finishing at the root (need to see a minimum of 2 vertical and horizontal lines tending to the root)	B1	2.1
		(1)	
(d)(i)	$x_2 = \frac{2e^3 - 4}{e^3 + 4} = 1.5017756$	M1	1.1b
-	$x_2 = $ awrt 1.502	A1	1.1b
(ii)	$\beta = 1.968$	dB1	2.2b
		(3)	
(e)	$h(x) = \frac{2e^{3x} - 4}{e^{3x} + 4} - x$ $h(0.4315) = -0.000297 h(0.4325) = 0.000947$	M1	3.1a
	 Both calculations correct and e.g. states: There is a change of sign e.g f'(x) is continuous α = 0.432 (to 3dp) 	Alcao	2.4
		(2)	
	N - 4	(13	marks)
	Notes mpts the product rule on xe^x (or may be $7xe^x$) achieving an expression of this clear that the quotient rule has been applied instead which may be quoted the second		$x \pm e^{x}$.
	$e^{x} + e^{x}$ (e.g. 7($xe^{x} + e^{x}$)) or equivalent which may be unsimplified (may be		further
B1: $\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)$	$\left(\sqrt{e^{3x}-2}\right) = \frac{1}{2} \times 3e^{3x} \left(e^{3x}-2\right)^{-\frac{1}{2}}$ (simplified or unsimplified)		

